If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2+6x-23=0
a = 9; b = 6; c = -23;
Δ = b2-4ac
Δ = 62-4·9·(-23)
Δ = 864
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{864}=\sqrt{144*6}=\sqrt{144}*\sqrt{6}=12\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-12\sqrt{6}}{2*9}=\frac{-6-12\sqrt{6}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+12\sqrt{6}}{2*9}=\frac{-6+12\sqrt{6}}{18} $
| -2p+3=11 | | 360-x+40-x-10=x | | 1/6y+1/4y=-2 | | f(2)=1/2-2 | | 6(x+1)=6+3(x+3) | | –4,3,m=1 | | -6x-5(x-4)=31 | | 28=-8x+4(x+2) | | 6x+4-3=4 | | x÷x+2=4 | | 360-x+40-3x-10=x | | 0.032x+5.491=0.020x+5.485 | | 7(x+5)=-7(x+5( | | 8/9y+5=-1/9y | | 2x^2-6x-6=-x+7 | | 270+15d=T | | 12h=42 | | 5=-(-z+3 | | 4(b+5)/3=2b-32/6 | | 4x+-7=13-6 | | 5a/2-2a/3=7/2 | | 0=2x^2-16x+7 | | -7/6x=-28 | | 3(m-4)^(2)=15 | | 12-3(x-12)+8x=-5(x-2) | | -8v=16/3 | | 4^2t=5^4t+4 | | 3x/10-3=x/5+2 | | 7x/6=-7 | | x+40-3x-10=360 | | -30=5/4y | | 4/7x+1/5=61/105 |